To find the domain and range of inverse trigonometric functions, switch the domain and range of the original functions. Each graph of the inverse trigonometric function is a reflection of the graph of the original function about the line y = x. Figure 4 The sine function and inverse sine (or arcsine) function.To calculate sine, cosine, and tangent in a 3-4-5 triangle, follow these easy steps: Place the triangle in a trigonometric circle with an acute angle in the center. Identify the adjacent and opposite catheti to the angle. Compute the results of the trigonometric functions for that angle using the following formulas: sin (α) = opposite
cos(u v) = cosucosv sinusinv tan(u v) = tanu tanv 1 tanutanv Double Angle Formulas sin(2u) = 2sinucosu cos(2u) = cos2 u sin2 u = 2cos2 u 1 = 1 22sin u tan(2u) = 2tanu 1 tan2 u Power-Reducing/Half Angle For-mulas sin2 u= 1 cos(2u) 2 cos2 u= 1+cos(2u) 2 tan2 u= 1 cos(2u) 1+cos(2u) Sum-to-Product Formulas sinu+sinv= 2sin u+v 2 cos u v 2 sinu sinv
Pretend you’re in the middle of your dome, about to hang up a movie screen. You point to some angle “x”, and that’s where the screen will hang. The angle you point at determines: sine (x) = sin (x) = height of the screen, hanging like a sign. cosine (x) = cos (x) = distance to the screen along the ground [“cos” ~ how “close